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Abstract

Magnetic Resonance Imaging (MRI) is emerging as a powerful tool for the diagnosis of breast
abnormalities. Dynamic analysis of the temporal pattern of contrast uptake has been applied in
differential diagnosis of benign and malignant lesions to improve specificity. Selecting a region
of interest (ROI) is an almost universal step in the process of examining the contrast uptake
characteristics of a breast lesion. We propose an ROI selection method that combines model
based clustering of the pixels with Bayesian morphology, a new statistical image segmentation
method. We then investigate tools for subsequent analysis of signal intensity time course data in
the selected region. Results on a data base of 19 patients are promising. The method provides
informative segmentations and good detection rates are obtained.
Index terms~-Bayesianmorphology, magnetic resonance imaging, Markov random fields, model
based clustering, region of interest, time-signal intensity curves.

1 Introduction

Magnetic Resonance Imaging (MRl) is emerging as a powerful tool for the diagnosis of breast

abnormalities. Its unique ability to provide morphological and functional information can be

used to assist in the differential diagnosis of lesions that other methods find questionable
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Haynor, Doug Ortendahl, and Brad \\lyman for useful comments and discussions, and to Andrew Jianhua Li for
pnwi,:iing the software for computing the five intensity parameters from the image data.
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pl('mfting. It appears as a complementary diagnostic modality in breast Im,aglng.

Because of the reactivity of breast carcinomas after Gadolinium injection, MRI has the

potellti;'l1 to allow differentiation between malignant and tissues. However, some

lesions also as a result reducing the specificity of MRI. Dynamic of the telupor;al

pattern of contrast uptake has been applied to improve For reviews of the knowledge

base on detection and differential diagnosis of breast tumors, see [2] and [1]. The diagnostic

criteria that are in use for differential diagnosis can be divided into those related to lesion

enhancement kinetics and those related to lesion morphology. The results in [3] suggest that

signal intensity time course data are useful for differentiating benign from malignant enhancing

lesions. The authors conclude that the overall shape of the time-signal intensity curve is an

important criterion, while a single attribute of the curve, such as the enhancement rate, may

not be enough.

The evaluation of morphologic features and the extraction of architectural information is

usually also based on post-contrast images of enhancing areas so that the above distinction is

somewhat arbitrary. Integrating multiple diagnostic criteria (both qualitative and quantitative)

is therefore recommended. Selecting a region of interest (ROI) is an important first step in

the process of examining the contrast uptake characteristics of a breast lesion from either a

morphologic or kinetic point of view. However, no standard method for ROI selection and

analysis of dynamic breast MR data has yet been established.

A limitation of many ROI analysis procedures is that only subjectively selected regions

are examined. Less subjective selection approaches have also been proposed. The work in

proposes a semi-automatic method that consists in as ROI the 3 x 3 block of pixels

with the mean enhancement in a manually suspect Another

method a variable quantit;{ing the enhancement is pn)p()sed in

into SUSipe<:l; and nO][lSDlSp,ect

ROI selection is

the Graduated Non-

MRl.



information into the classification process, However

there are differences in the analysis of breast MRI and brain MRI, and less research has been

devoted to the former. In breast MRI there is a centrality of segmen

tation finding the ROI). Also, breast tissues are much more heterogeneous than brain

tissues. Normal breasts can consist almost entirely of fatty tissues or include dense

fibroglandular tissues. This results in additional challenges for the analysis of breast MRI. Also,

in dynamic breast MRI, the information to be modeled at each pixel is not a single intensity

measure, as is usual in brain MRI, but a whole signal intensity time curve.

In this paper, we propose an unsupervised ROI selection method based on statistical tech

niques. We describe a multivariate classification method that enables us to take account of more

than one measurement. It results in color classification images in which parts of the breast with

similar signal intensity time courses are assigned to a class represented by a color. This gives

morphological information that can be used to select an ROI by focusing on the pixels with

the strongest enhancement. We have also developed some tools for analyzing the enhancement

kinetics for pixels in the selected region.

In the following section, we describe our data set for this study. In Section 3 we present the

multivariate classification method. We describe the model-based clustering method used, along

with complementary procedures to include spatial information. In Section 4 we discuss how

to use the resulting classifications for ROI selection and enhancement kinetics analysis, and we

also propose techniques for improving differential diagnosis based on the shapes of the curves in

the selected region. The procedure is then illustrated and the results for our data set reported

in Section 5.

2 Data

We considered sequences of for 19 different cases and

Several two-dimensional slices were available for each For each

25 seqtlential magnetic resc,nance

See 1 the

injl~cti.on. Instead



America MRI, Inc. [9J. A fit is carried out at each pixel location for the intensity

curve. 1 shows a curve at a given pixel, after subtraction of the

reference The fitting model is assumed to be made of three successive sections: a zero

a second order polynomial curve and a flat line.

We used the following five derived variables in our study:

• Time to Peak: the time at which the signal peaks.

• Difference at peak: absolute increase of intensity between the beginning of the signal

and the time at which the signal peaks.

• Enhancement slope: in units of intensity/time.

• Maximum step: maximum change between two adjacent dynamic samples.

• Washout slope: in units of intensity /time.

In addition to the images, diagnostic information is available. Among the 19 patients, 12

have tumors diagnosed as carcinomas and 5 are diagnosed as not having cancer. For two others,

the diagnosis is ambiguous. In addition, for two of the patients, follow-up data sets are available

but with no associated diagnosis. See Section 5 for more details.

Our starting point is thus five images for each case, one showing the values of each derived

variable at each pixel location, rather than the original 25 images. Although this preprocessing

reduces the amount of data to be analyzed, the characterization of breast lesions based on these

MR images remains a difficult task. In Section 3, we present the multivariate statistical methods

for clustering and spatial segmentation we propose to synthesize the available information into

a classification image.

3 Producing Classification Images

We propose statistical seE~Im~ntati.ou methods produ(~e a for each

pffp'rti'JP uluuber K of conlponents



tumor and other tissues of less interest.

corresponding to air are eliminated prior to further leaving three or four components,

depending on whether or not there is a tumor. We therefore considered into three

or four classes.

We also investigated the possibility that allowing more than four classes may provide better

statistical performance in terms of identifying the main features of interest in the image. In this

connection, we assessed the possibility of using a statistical method to determine the number of

classes based on the data. We did this using the Bayesian Information Criterion (BIC) [10]. The

BIC is computed given the data and a model and allows comparison of models with differing

parameterizations and/or differing number of classes. It is the value of the maximized model

loglikelihood with a penalty for the number of parameters in the model. It can be viewed as

providing an approximation to the Bayes factor, which is the standard Bayesian approach to

model selection [11]. BIC can be compared to other selection criteria. One ofthem is the Akaike

Information Criterion (AIC) of [12] which differs from BIC in the penalty term but has been

shown to overestimate the number of parameters in practice. The MDL criterion proposed in

[13] is based on stochastic complexity and is similar to BIC, and methods using cross validation

([14]) seem promising but their tractability in our context is not straightforward due to the

dependence structure in the data. Many other approaches can be found in the literature on

model selection (see for instance the list of references in [11]). BIC has become quite popular

due to its simplicity and its good results.

However, BIC tended to select values of K between 10 and 15, which accurately reflects the

inhomogeneity of some kinds of tissue, but turned out not to help identifying tumors. In what

follows, we have reported results for K = 3, 4 and 10. Overall, we found that using K = 4, as

suggested by the underlying biology, performed best.

Model-based statistical methods for multivariate observations are flexible and

have 17, However for cOlnplex data such as those associated

ac<:ount. For this propose refining the clust€:riI1lg results 3.1



of the classification.

3.1 Model-Based Cluster Analysis

We propose to use marginal mixture EM segmentation as a first step in our analysis. The idea is

to model the marginal distribution of (possibly multivariate) intensities as a finite Gaussian

mixture model, and use the EM (Expectation-Maximization) algorithm [21, 22] to estimate the

model parameters.

We used the MCLUST software for model-based clustering [17, 19]. It combines model-

based Gaussian agglomerative hierarchical clustering methods [15, 23]) with the EM algorithm

for Gaussian mixture models [24]. The EM algorithm is an iterative method widely used in

parameter estimation for incomplete data. For clustering applications via mixture models, the

missing values are the cluster membership probabilities of each pixel. To be effective, the EM

algorithm generally requires a good initial estimate. Classifications produced by model-based

Gaussian agglomerative hierarchical clustering, which are often good but rarely optimal, are a

good way to initialize the EM algorithm for classification ([25],[16]).

In what follows, observations (corresponding to image pixels) are denoted by Yi and are

assumed to be five-dimensional vectors, corresponding to the five derived variables. The Yi are

assumed to arise from a K -component Gaussian mixture model, so that if Yi belongs to class

k E {I, ... , .l(}; its distribution is multivariate normal (Gaussian) with mean vector J-Lk &~d

covariance matrix L:k . The likelihood for our data is then

n K

£(fh,··· ,flK;pI, ... ,PK y) II 2:>k!k(Yi I
i=l k=l

and !k is the multivariate normal density of the kth component in the

its mean 11k and covariance matrix

Here is >



which may also be parameterized to impose cross-cluster constraints. There are a number of

possible parameterizations of (15), [24]' many of which have been implemented in MCLUST.

Common instances include = AI, where all clusters are spherical and of the same

constant where all clusters have the same geometry but need not be spherical [26J;

and unrestricted Lk' where each cluster may have a different geometry [27J. Banfield and

Raftery [15J proposed a general framework for geometric cross-cluster constraints in multivariate

normal mixtures by parameterizing covariance matrices through eigenvalue decomposition in the

form Lk = AkDkAkD[, where Dk is the orthogonal matrix of eigenvectors, Ak is a diagonal

matrix whose elements are proportional to the eigenvalues, and Ak is an associated constant of

proportionality. Their idea was to treat Ak, Ak and Dk as independent sets of parameters, and

either constrain them to be the same for each cluster or allow them to vary among clusters.

We obtained a first segmentation via MCLUST with the constant-shape model Lk = AkDkAD[.

The algorithm provides an estimate of the conditional probability that each pixel belongs to

each of the classes, given the observations. These probabilities are obtained using the EM algo

rithm. The segmentation derived from these conditional probabilities is the one which assigns

each pixel to the class with the greatest probability.

3.2 Spatial classification

In this section, vv"e discuss refinements of our model-based classification to incorporate spatial

information. In Section 3.2.1, we describe image smoothing via morphological filters, which treat

each pixel in the initial classification only in the context of neighboring pixels. In Section 3.2.2,

we discuss methods that make use of the original data in addition to the initial model-based

classification.

3.2.1 Morphological filters

pro,cedl1res that succes,;ively mc,rp:aologJcat rank upl::nttUl to

Each



is to c; otherwise the color of pixel to Zi.

For example, when r = 1, this is to the according to which

a pixel assumes the color which is taken most often by its neighbors. This corresponds to a

median filter except that the are updated rather than simultaneously.

Morphological filters tend to produce very smooth classifications, and more smoothing occurs

as r decreases. We refer to morphological filters as blind restoration, since they do not make

use of the original data. They have the disadvantage that useful information may be lost in the

process, and it is not difficult to find instances in which they perform relatively poorly [20].

Nevertheless, morphological filters may be useful in our application to help isolate possible

tumors from the initial MCLUST classification. Blind restoration can smooth the data consid

erably, which can be useful because it eliminates clutter and extraneous minor features in the

image. However, in images where the tumor is less clearly identified, this level of smoothing runs

the risk of eliminating the tumor altogether, and should probably be used only in conjunction

with less smoothed images as well. Such images can be obtained using the procedure described

in the next section. It has features similar to morphological filters but is statistically based.

3.2.2 Bayesian Morphology

Bayesian image segmentation is based on probability models. The unknown classification, Z =

{Zi, i E S}, -\vhere S is a set of pbcels, is interpreted as a particular realization of a random

vector Z. The observed data set y is interpreted as a realization of a random vector Y. The

vector Y depends on Z through a known conditional probability density function £(ylz) which

incorporates the observed data formation model and the noise model.

The unknown classification Z is assumed to be a realization of a random field with distri-

bution Then the estimated classification z is based on the of z. n,;"cno;;"

. A standard restoration criterion consists

the Maximum A Posteriori

maxinllizjlng this UtlllNLY, lead-

popular mo<!elirlg ~,sunllptjlons is

alizatic)fi of This



tion is that,

density function

called the neighb'orh,ooQ

Z = z, the Yi are conditionally independent and have the same conditional

that depends only on Zi. Thus £(ylz) can be written as the product

£(ylz) = ITiES

Finding the MAP estimate under these assumptions can require heavy computation. A

less computationally demanding method that provides a fast approximation to the MAP is the

Iterated Conditional Modes (ICM) algorithm [31). The ICM algorithm is iterative. Given a

current estimate i of the image, a new one is computed by visiting each pixel in turn. When at

pixel i, the current value there is replaced by the value that maximizes the conditional density

(3)

of the intrac1cably

given all other current pixel values is\{i} and the fixed observation y. This choice is motivated

by the fact that p(zly) = p(zilzs\{i},y) p(zs\{i}ly) . When pixels are updated sequentially,

choosing values that maximize the conditional probability p(Zi!zS\{i},y) increases the posterior

distribution and ensures the convergence to a local maximum of p(zly).

Under the previous modeling assumptions, maximizing the conditional density (3) is equiv

alent to maximizing f(Yilzi) p(ziliN(i))' since only the dependence on Zi is relevant for the

maximization.

A widely used model for image segmentation or classification in a number K of classes is the

Potts model defined below. The standard nearest-neighbor Potts model depends on a parameter

fJ and is defined by p(z) = Z(fJ)-l exp(fJv(z)), where v(z) = Li~j 8(Zi, Zj) is the number of pairs

of neighboring pixels having the same color in z. In the above sum, i '" j denotes the statement

that the pixels i and j are neighbors, and refers to the Kronecker delta function, equal to

1 if and are the same, and to 0 otherwise. The is the normalizing constant, or

=Lz . This function is difficult to compute because

number of terms in the summation. The conditional distributions of

is the

The model deLlenljs

tend of



= {l- P if Yi Zi

otherwise.

A good transmission is assumed to be the most probable, which means that C(l - > 1.

In [20], we showed that the IOM algorithm could be formulated morphological terminol-

ogy and proposed Bayesian morphology, a procedure that combines the speed of mathematical

morphology with the principled statistical basis of ICM. In Bayesian morphology, a succession

of morphological rank operators is applied, and at each iteration, the rank is estimated from

the data and a current classification. One advantage of such a mathematical morphology for-

mulation is to reveal the existence of insensitivity conditions for the parameters. This means

that the final segmentation is not sensitive to the precise values of the model parameters. This

is a key observation that we use to reduce the complexity of the estimation step in traditional

unsupervised ICM and to save a lot of computation time. 'When performed on discrete images

(or if an initial segmentation has been carried out), the resulting algorithm is equivalent to IOM

in the sense that the final segmentation or classification is the same. In this case, it differs

from ICM essentially in the way the parameter estimation step is carried out. According to the

insensitivity conditions, point estimates need not be computed.

By estimating the rank of the morphological operator at each iteration instead of using a

predetermined or arbitrary chosen rank, these methods make more use of the available informa-

tion than blind restoration, and as a result tend to produce classifications with more detail. In

comparison to blind morphology, less noise is likely to be eliminated, while ambiguous features

worthy of further consideration are more likely to be retained. These classifications provide a

first tool for guiding diagnosis. Often the lesion is easily identified and the radiologist can be

asked to select that are sUi3picio1us or otherwise of interest to be further examined. In

the next ::>e{;~ll)ll, we show that additional information is in the data that can be used

a more automatio detection and localisation of lesions of interest.

4

We

Region Of Int;erlest Selection

an ROI



values of each of the five derived basis of

an ROI selection. The analysis can then be carried out by looking at the shape of the ROI

(morphologic feature analysis) or at the curves (kinetics analysis) for pixels in a selected cluster

or region in order to identify the nature of the lesion.

4.1 Deciding which of the segments is the RDI

In breast MRI, lesions are usually identified because they enhance after intravenous injection.

Although the pathophysiologic basis of this feature is not yet been fully known, some basic facts

are known that should help in designirig tools for lesion detection and differential diagnosis [1, 2].

In our study, we focus on rapidly and strongly enhancing lesions. We look at enhancement

rates because malignant lesions tend to enhance more quickly than benign ones [1]. Strong

enhancements are characterized by a large difference at peak, i.e. the absolute increase in

intensity between the beginning of the signal and the time at which the signal peaks. For a

given classification image, the mean value of difference at peak is computed for each class in

the image. We then select the class with the largest mean value as containing the ROI, and we

identify the ROI as the biggest connected component in the class, as for instance in Figure 8(e).

Note that another criterion for rapid enhancement would be a small time to peak. This would

correspond to a large value for the variable referred to as time to peak in our data, which is a

linear transformation of the real time to peak. However, this criterion would sometimes select

the heart area \vhich enhances faster than the lesion of interest. Using the largest difference at

peak instead, the class containing the suspicious region is always selected as desired. Illustrations

are given in Section 5.2.

The difference at peak can also be used to determine a meaningful color assignment. In most

classification methods, images are produced using colors (or equivalently class labels) artificially

assigned to the different regions (see Table 2). In our study, we propose to automatically display

our results the difference at criterion so that can be marked

with a prE;..dE!ter'ffii:aed label and dis:pl''LyE!d with a SPE!Cltic color

4.2 Enhancement kinetics analysis

In o12lgnosls, an ,m:nor'taJ1t is estimated ""i-tA,'n of



too big. We could also select one or a few pixels in the ROI with the probability. We also

imreslcigiated other ways to compute such mean curves The idea is to more

weight to in the ROI which are typical of the lesion and less weight to for which

we are more uncertain. The question is then to find reasonably good as autoraat;ic2iJly

as possible.

Let Broi denote the set of pixels in the ROI and W {Wi, i E Broi } a vector of weights

associated to each pixels. A mean curve can be computed by multiplying each signal in the ROI

by Wi/ 2: Wi before summing all the signals. If Wi is equal to either 0 or 1, using weights is
iESroi

equivalent to selecting some of the pixels. The question then is which pixels to keep (Wi = 1) and

which to discard (Wi =0). As an illustration, we first kept the 33% pixels in the ROIs with the

highest difference at peak values. We then used the conditional probability estimates provided

by MCLUST (see Section 3.1) and kept the pixels for which the probability of belonging to

the lesion class was very close to one. More generally, the estimated conditional probabilities

estimates can be used as weights. See Figures 9 and 10 for an illustration of the different curves

obtained this way.

4.3 Time-intensity signal analysis in the ROJ

Assuming that we have assigned a representative curve to the lesion under study, our third

step is then to focus on the shape of this curve. \l/e take into account information from other

sources [3, 1, 2]. They distinguish three patterns of signal intensity curves on the basis of three

characteristics, the enhancement the presence of a plateau and that of a washout slope. Type

I shows a monophasic enhancement that persists until the late post-contrast period (linear time

course). This type is indicative of a benign lesion. Type II is a biphasic enhancement where

intensity reaches the maximum approximately 2-3 minutes after injection and at

level (pl,xte,m This has been observed in both and m,lii/;I1,mt lesions.

III a washl)ut enhancement. As enllaflCeluellt is alreaC[Y

it



5 Results

To evaluate our procedure, we first focus on its ability to produce informative classification

(Section 5.1). We show detailed results for three cases. We analyze the various choices

of number of segments and segmentation methods that can be made. ROI analysis results

(Section 5.2) are then given for all 19 patients (see Table 3).

5.1 Breast MRI segmentation

We report detailed results for three data sets. We have a set of twenty-five 512 x 256 images

corresponding to one slice for patient 05, containing a spherical lesion diagnosed as a carcinoma.

Another set consists of twenty-five 176 x 352 images for slice 6 of patient 08. The MR data

was obtained less than a week after surgery and the radiologists concluded that there was no

residual carcinoma, i.e. the margins of the surgery site were not suspicious. For patient 28, three

slices are available, slices 10, 11 and 12, each one consisting of twenty-five 192 x 192 images.

A spherical carcinoma is known to be present in slices 10 and 11. After a tumor biopsy, the

tumor size was estimated to be less than 16mm, which means that there should be no malignant

tissues on slice 12 (a slice is 8mm).

Figure 2 shows the segmentations for 3, 4 and 10 clusters for slice 09 for Patient 05. These

numbers do not include the background as a class so that the number of colors in the final

segmented images is equal to the number of clusters plus one.

In all three images, one can easily recognize the heart and tumor locations. The cluster

corresponding to the heart and vessels is shown in blue while the tumor is in red. The remaining

colors indicate other tissues. We will refer to these three clusters as heart, tumor and misc. The

latter group is composed of more than one cluster in the K = 4 and K 10 cases.

In the segmentation obtained for K 3 (Figure 2(b)), many pixels in the skin area are

classified as tumor, an indication that more classes are needed for useful image sel~meni;ation

and tumor identification. This conclusion is further the results for K in

nUlub,er of red skin area is 2

If (number of nh"pnmt;nm:



Table 1: Cluster volumes for K =3 and K 4 slice

1112
975

heart
1597
1312

707
751 378

single one when K decreases from 4 to 3. The behavior of the five derived variables Figure

3) in these two clusters is similar for the time to peak and the maximum step. The tumor shows

a greater range of values for difference at peak and enhancement slope and a smaller range of

values for the washout.

For both K = 3 and K = 4, the main difference between the heart cluster and the tumor

cluster lies in the difference at peak, enhancement slope and washout variables. In this case the

tumor shows a greater range of values for the three parameters. The additional cluster produced

for K = 4, referred to as misc1 in the figures, seems to be mainly composed of outliers. The

enhancement slope and the washout are equal to zero for most of the pixels in this cluster.

Another difference between the segmented images for K = 3 and K = 4 is the classification

of the area to the left of the tumor, which is classified as tumor for K = 3 and non-tumor for

K = 4. For a higher number of clusters (Figure 2(d)), the tumor area is represented by more

than one cluster. For instance, when K =10, four colors can be distinguished in this area. Note

that, as before, the method detects the presence of a cluster of pixels whose enhancement slope

and washout variables are equal to zero.

In the case K = 10, it appears also that the vessels above the heart are classified as tumor

instead of heart, which does not occur when K 3 or K 4. Also of note is that when K 4

and K =10, the tumor is surrounded by a thin border, composed of pixels from several clusters.

Similar analysis has been made for the other data sets. Figures 4 and 5 show the segmen-

tations for Patients 08 and 28. They illustrate the ability of model-based clusterin.g to pn)dl1Ce

that rer;lroljm;e the imlPor'taIlt features contained in the full set of 25

tumor area is not paintE~d red as one



in Section 3.2 are then to further refine this initial fnrther

for patient 05, using the initial MCLUST classifications (Figure 2) to apply blind restoration

with r = 1, we obtained, for K =3,4,10, the segmentations shown in the first column of Figure

6. For r =3, the results are shown in the second column of Figure 6. Blind restoration smooths

the data considerably, and, as expected, the results are even smoother with r = 1 than with

r = 3. For this image it clearly eliminates extraneous minor features and retains the tumor,

and so in this case the result is satisfactory. However, in general it may be helpful to use less

smooth images as well.

Using Bayesian morphology, we obtained the classifications shown in Figure 7. In addition

to an initial classification, the method requires an initial value for the parameter p (see Section

3.2.2) between aand 1 that controls the first operator applied. When p is close to 1, the resulting

rank operator is a median filter (r = 1). In Figure 7, p was set initially to 0.99. For this example,

the classifications with p set initially to 0.45 were similar for K = 3 and K = 4. For KIa,

the analysis with p = 0.99 was clearly better because it eliminates more noise, without removing

any features of actual or potential interest.

Similar investigations were carried out for all the patients in our data set. Here are our main

conclusions:

1. Model-based clustering techniques provide informative initial segmentations.

2. Partitions into 4 colors/segments were adequate to reveal the tumor of interest. Three

segments were too few because the resulting partition was not sufficient to distinguish

the tumor from other tissue classes. Ten segments were too many, because the resulting

partition divided the tumor pixels among several classes.

3. Bayesian morphology is useful in refining these initial classifications by:

a simultaneous picture of all the (grey-level) bands;

emTIlrlatllllg noise and dlstra,ctlIlg fE!atl1res; and

enJtlallcing features of potellti,al interest.

at the pos:sible

restor:ati()n \",.,,"','uu CVIUWUl of

of elilniIlating unclear features of poterltiilland a clearer yll:Lun::,



Table 2: Patient 05, slice 09. The classifications in the first column of 6 into K =3,4,10 classes are
used to compute mean values for variable difference at peak in each non-background component. The
value corresponds to the lesion of interest while taking the mean time to peak would select the heart
area.

so that there is even more potential loss of useful information.

Based on these results, we recommend providing radiologists with two different color syn-

thetic images, one to which statistical smoothing has been applied (e.g. Figure 7(b)), and

another based on a more drastic heuristic smoothing method (e.g. Figure 6, first column,

K = 4). Note that there is a solid statistical basis for Bayesian morphology, but less so for the

more drastic smoothing performed by blind restoration.

5.2 ROI analysis

Considering this first classification step, the second step is to decide which of the segments is

the R01. We based our choice on the values of the difference at peak parameter we considered.

As an illustration, Table 2 shows the values for the mean difference at peak and mean time to

peak for the classifications shown in the first column of Figure 6. The suspicious regions, in red,

are the ones selected when a maximum mean difference at peak criterion.

The sul)se,qUlmt enhancement kinetics analy'sis can then be made on the basis of the

observed in selected RO1. The is to cOIupute repres,ent;athre of the under

As described estimated paj;ter'u



in the ROIs, where the ROI is as connected

component in the red region of Figures 8(d)-(f). Another possibility is to use only selected

pixels, for instance those for which we have a good confidence of their belonging to the ROI. As

an illustration, we considered pixels with the highest difference at peak values. Figure 9 shows

the selected pixels and the corresponding mean curves in three cases. We also selected pixels

in the ROI according to their membership probability estimates as provided by MCLUST (see

Section 3.1). We kept the pixels for which the probability of belonging to the lesion dass was

very dose to 1 (within 10-7). Results are shown in Figure 10 (upper curves). More generally we

used the membership probability estimates as weights to compute a weighted mean curve. This

gives the results in Figure 10 (middle curves). The curves are very similar to the mean curves

in Figure 8 (g)-(i) because in the lesions the conditional probabilities estimates are dose to one.

Selecting only a few pixels in the ROls, those with the highest difference at peak values or with

the highest conditional probabilities, provides mean curves where features (slope enhancement,

washout, etc.) are more dearly marked.

The resulting curves are usually easily assigned to a curve type, I, II or III, where the types

were described in Section 4.3. For patients 05, 08 and 28 the assignments are respectively II,

I and III. This is consistent with the known diagnostics which correspond respectively to a

carcinoma, a benign lesion and a carcinoma, and confirms that our procedures are of interest

for the differentiation between malignant and benign lesions.

The same analysis was carried out for all 19 patients in our data sets. The results are

summarized in Table 3. We computed some rates following the "minimum risk" strategy, i.e.

considering doubtful lesions as malignant. We used the following parameters: a: number of

patients diagnosed as having cancer for which our method condusion is "cancer" (true posi

tive), b: number of patients diagnosed as not having cancer for which our method conclusion

is "cancer" (false positive), c: number of diagnosed as cancer for which our

method conclusion is " no cancer" (false negative), d: number of diagnosed as not

for method is "no sensi-

tivity as of

the dia,gnostic informa,ti0I1), The specificity was calcu-



Table 3: Results (number of paJeierlts) of the ROI an2uvsis for 19 patienj;s.

100%. We also computed the probability that there is actually cancer when the analysis

indicates cancer (positive predictive value): 1 and that with a conclusion indicating "no

cancer" there is effectivily no cancer (negative predictive value): d~c =0.83.

These good results illustrate the gain in using more than a single enhancement measure

and in combining two complementary type of analysis. The classification images provide a good

analysis of the different regions in the breast. Among these regions one of them is usually clearly

emerging as a potential tumor. The following signal intensity time course data analysis enables

us to further identify the lesion. Note that as regards the final conclusion, a detailed analysis

of the classification images is not always necessary. In most cases the images make the lesion

appear very clearly and our ROI selection method selects the right region automatically.

Typically, in our experiments we observed two situations requiring more care. One data

set was that of a patient with no tumor. Not surprisingly, the initial MCLUST classifications

produced very fragmented segmentations, after which the spatial procedures smoothed out all

features considered as noise and failed to identify homogeneous regions as candidates for a

subsequent kinetics analysis. This could have been interpreted as a sign in favor of a "no

tumor" conclusion. We were able to confirm this conclusion by performing the analysis on the

fragmented MCLUST classification which identified a type I curve (benign).

In another case, after a region showing significant enhancement was selected.

However the location the and of the region was such that the possibility

When imresj;ig(ltirlg

of m(lJi~~mmt tumor could be discarded.

numbers of pa1ciellts, more cmnpLex situations can Ud.IJIJeu. For



6 Discussion

We have proposed tools for guiding diagnosis of breast abnormalities when MRl data are avail

able. As a diagnosis we relied on the examination of the contrast uptake characteristics

of a breast lesion from both morphologic and kinetic points of view. We first focused on tools to

help isolating potential lesions (regions of interest) prior to more specific analysis of the enhance

ment curves in the ROIs. We have applied model-based clustering followed by spatial smoothing

techniques to data derived from a breast MRI with the object of producing one or more classi

fications useful to experts for breast cancer diagnosis. In particular, the classifications obtained

after morphological filtering (K = 4 in Figure 6) clearly indicate the tumor in the image that

we analyzed. However, this particular image may not represent a typical situation since the

tumor is relatively easy to distinguish by eye. While the more conservative segmentations (e.g.

Figure 7 (b)) lack smoothness to some extent, they may well retain features of potential interest

when applied to images in which tumors are less apparent. This trade-off between smoothness

and resolution needs to be assessed by further empirical research on other images. The trained

human eye can often discern features that are not completely delineated, but it cannot recon

struct features that have been removed. However the ideal for radiologists would presumably

be to have very definite, ideally black and white, images showing the tumor and non-tumor

areas. We then presented tools for the enhancement kinetics analysis in the selected ROI. We

obtained very good results as regards the correspondence between the estimated curve types

and the known diagnosis.

This investigation indicates that our proposed statistical methods, which enable us to take

into account more than a single enhancement measure, are quite promising for tumor identi

fication. There is a clear in combining segmentation with kinetics analysis. Associating

the location and of a lesion with its pattern of to be useful in re"ol'l'in.J!

qu!estionable cases.
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1: MR images at (a) 10 70 seconds,
(c) 150 seconds, (d) 250 seconds, (e) signal intensity curve at a given pixel, twenty-five
measures were acquired, one measure every 10 seconds.

Figure 2: MCLUST classifications for Patient 05, slice 09. (a) reference image, (b)
three-class segmentation, (c) four-class segmentation, (d) ten-class segmentation.

Figure 3: Histograms for the five parameters in the different classes of Figure 2(c)

Figure 4: MCLUST classifications for Patient 08, slice 06. (a) reference image, (b)
three-class segmentation, (c) four-class segmentation, (d) ten-class segmentation.

Figure 5: MCLUST classifications for Patient 28, slice 10. (a) reference image, (b)
three-class segmentation, (c) four-class segmentation, (d) ten-class segmentation.

Figure 6: Blind restorations with r = 1 (first column) and r 3 (second column)
using images in Figure 2 as initial classifications, for K= 3, K=4 and K= 10.

Figure 7: Bayesian morphology using images in Figure 2 as initial classifications. (a)
K= 3, (b) K=4, (c) K= 10.

Figure 8: ROIs and associated mean curves in three cases. (a), (b), (c) dynamic
image at t = 1 for patient 05, slice 09, patient 08, slice 06 and patient 28, slice 10. (d),
(e), (f) ROI selections (largest connected component in the red regions). (g), (h), (i)
mean time-intensity signals in the ROIs.

Figure 9: ROIs using 33% and 67% difference at peak quantiles, and associated
mean curves in three cases. (a), (b), (c) zoomed ROIs from MCLUST classifications
with K 4, for patient 05, slice 09, patient 08, slice 06 and patient 28, slice 10. (d),
(e), (f) ROI segmentations using difference at peak quantiles: highest 33% values in
red, lowest 33% values in green. (g), (h), (i) mean time-intensity signals in each class
(upper curve for the red class, lower curve for the green class).

Figure 10: Mean curves using conditional probabilities estimates from MCLUST. (a)
patient 05, slice 09, (b) patient 08, slice 06 (c) patient 28, slice 10. Upper curves: mean
curves when selecting pixels with conditional probability very close to 1 (within 10-7 ).

Middle curves: weighted mean curves when using conditional probabilities as weights.
Lower curves: mean curves using all pixeis in the ROIs.
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